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The purpose of this Communication is to call into question the Cao, Sarkar, and Prasad (2004, CSP) con-
clusions about the validity of the diffuse interface method for direct numerical simulations of such (shear)
flows. This has also an impact on understanding the interfacial-instability physics of sharp vs. diffuse
(smeared, sheared) interfaces.

We discovered the issue in trying to understand the CSP code-benchmark comparisons with our DNS code
MuSiC-SIM (Nourgaliev et al., 2006a,b,) – the ‘‘SIM’’ stands for ‘‘Sharp Interface Method’’. Our code solves
the Navier–Stokes equations in a multi-fluid system by matching the flow fields across interfaces (as is the case
for immiscible fluids) through the exact (jump) conditions. The code used by CSP is based on a widespread
modeling idea that ‘‘imbeds’’ interfaces in the same overall calculation (of a single ‘‘fluid’’) as ‘‘smeared’’
or ‘‘diffuse’’ transition regions for fluid properties (density, viscosity, etc.), hence, ‘‘Immersed Boundary
Method’’, or ‘‘Diffuse Interface Method’’ (DIM) – see for example Griffith and Peskin (2005). The other
key ingredient of this modeling approach is that the surface tension is modeled as a volume source in the
momentum equation, again smeared over the ‘‘thin’’ transition regions (the ‘‘Continuous Surface Force’’
approach) – Brackbill et al. (1992), Unverdi and Tryggvason (1992).

In making our points here we bring to bear also linear stability analyses as implemented in our computer
code AROS (All-Regime Orr–Sommerfeld). The AROS code involves domain-decomposition and Chebyshev
Collocation Methods applied to the linearized Navier–Stokes equations (the Orr–Sommerfeld formulation).
We use high-order Chebyshev polynomials and quadruple precision to permit convergent eigensystem analysis
(even for large density/viscosity ratios) with the QZ algorithm. The code has been extensively verified as sum-
marized in Table 1, and in turn it has been used as the standard for verification of MuSiC-SIM in the linear
regime. Subsequently, it has also been used for the study of the effects of smearing (physical, or numerical) on
linear stability of interfaces in shear-dominated flows.

We shall show that (a) the validation tests performed by CSP (their Section 4.1.2) are in fact less compelling
than suggested by their results; in particular the linear stability results published by others that they used for
comparison are in error, and (b) the results presented to support their non-linear stability discussion (their
Section 4.2.1) are inaccurate. Further, we shall present results to make it evident that these errors are not
the fault of CSP but they are inherent in all DIM methods, which are in fact not suitable for DNS of
shear-dominated flows.
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Table 1
Scope of the AROS-verification effort

Reference cited Flow Figure/Table-variable(s)

Orszag (1971) Single-phase Poiseuille Table 2a – eigenvalues
Table 4a – Rcr

Yih (1967) Sharp interface Couette, Poiseuille Eq. (46)a – asymptotic eigenvalue (equation)
Yiantsios and Higgins (1988) Sharp interface Couette, Poiseuille Table 1a – eigenvalues(with S)

Fig. 4/6b – n vs wavenumber (with S)
Fig. 8c – eigenvalue vs wavenumber (with gravity)
Fig. 11c – eigenvalue vs wavenumber
Fig. 12a/bb – wavenumber vs R, m vs Re

Su and Khomami (1992) Sharp interface Poiseuille Table 1a – eigenvalues for wavenumber of 10�5

Table 2a – eigenvalues for wavenumber of 10�2

Fig. 2b – n vs wavenumber
Boeck and Zaleski (2005) Sharp interface free shear mixing Fig. 7c – Growth factor vs wavenumber

Fig. 12c – Growth factor vs wavenumber (with S)
Pinarbasi and Liakopoulos (1995) Diffuse interface Poiseuille Fig. 5c – eigenvalue vs wavenumber
Coward et al. (1997) Sharp interface Couette Table Ia – leading eigenvalues

Table IIa – eigenvalues
Malik and Hooper (2005) Diffuse interface Poiseuille Fig. 2c – eigenvalue distribution (single fluid)

Fig. 3c – eigenvalue distribution (diffuse interface)
Table 3a – eigenvalues

S – surface tension included.
a Agreement with numerical value.
b Agreement with neutral stability curves.
c Graphical agreement.
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(a) The code validation case of CSP was made by comparing growth factors (K) obtained from numerical
results of wave-amplitude-variation with time fit to
Table
Growt

CSP
AROS
a� ¼ a�0eKt� ð1Þ

with linear stability results from Khomami and Su (2000) (KS), as presented in CSP’s Table 3. Eq. (1) is for a
frame translating with the interfacial velocity U0, and t* is based on U0 and the channel depth d = d1 + d2 of a
two-fluid system. In dimensionless terms the results depend on the depth ratio n = d1/d2, viscosity ratio
m = l1/l2 the wave-number a = 2p/k, and the flow Reynolds number R = U0dvq/lv where subscript v denotes
the more viscous of the density-matched fluids. In addition, CSP found that two dynamically similar cases
(obtained by inverting the m and n) produced the same numerical results as exhibited in their Table 2. Spec-
ifications and results for all these cases are reproduced here in respective Tables 2 and 3 along with several
additions and explanations as follows:

1. The KS linear stability results are inaccurate (by comparison to AROS and new calculations by Khomami)
as seen in Figs. 1a,1b and Table 3. The KS error (a 25% under-prediction) has been documented in Theof-
anous et al. (in press).

2. In Figs. 1a, 1b and Table 3 we can see that CSP have found one excellent and one reasonably good agree-
ment with the two erroneous KS results.
2
h factors for the two pairs of dynamically similar cases of CSP (the CSP taken from their Table 2)

Case 1 Case 2 Case 3 Case 4
R = 7.1; m = 2; n = 0.25 R = 7.1; m = 0.5; n=4 R = 5.4; m = 2; n = 0.33 R = 5.4; m = 0.5; n = 3

0.216 0.216 0.210 0.209
0.282 0.282 0.207 0.207



Table 3
Growth factors for the two cases treated by KS (the CSP taken from their Table 3)a

m n Rb a KS CSPa AROS

Case 1 0.203 3.330 0.009 0.72 0.0014c 0.0014 0.0019
Case 2 0.203 4.875 0.007 0.53 0.0020 0.0016 0.0026

a For the purposes of this table CSP adopted the normalization used by KS rather than their own.
b These are the correct Reynolds numbers (Theofanous et al., in press).
c The correct value from KS is 0.0015 (this is why the CSP point in Fig. 1a is off the KS line).

Fig. 1a. The growth factor found in Case 1 of CSP, and the Khomami and Su (2000) Orr–Sommerfeld curve from which Case 1 was
defined, in comparison with AROS, new results by Khomami, and experiments by Khomami and Su (2000).
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3. While the definition (the m, n and a values) of the two KS cases considered by CSP is correct, the R values
in CSP Table 3 are incorrect (they appear to have been reversed) – we show the correct values and CSP have
kindly confirmed that the error occurred in setting up their table. The CSP results can be seen to be off by
16% and 46%.

4. As Table 2 shows, of the two CSP consistency tests, the one is in excellent agreement while the other is off
by 23% with respect to AROS.

(b) A partial accounting of other problems with CSP in support of their non-linear simulations will be made by
reference to their Figs. 2 and 8. Fig. 2 is important because it was said to be typical of all their results. Fig. 8 is
important because based on it CSP speculate about non-linear effects and transient growth, a subject of con-
siderable current interest.

In regards to their Fig. 2, reproduced here as Fig. 2, along with our results from AROS, MuSiC-SIM, and
MuSiC-DIM, the following can be noted:

1. The CSP result exhibits a significantly lower (by 30%) growth factor as compared to the accurate AROS
(and MuSiC-SIM) results. The MuSiC-SIM simulations were found to require grids in excess of a few hun-
dred nodes (per wavelength) to attain asymptotic grid convergence (see Table 4), and the result is in perfect
agreement with AROS. This suggests that the reported convergence observed by CSP with their grids of



Fig. 1b. The growth factor found in Case 2 of CSP, and the Khomami and Su (2000) Orr–Sommerfeld curve from which Case 2 was
defined, in comparison with AROS, new results by Khomami, and experiments by Khomami and Su (2000).

Fig. 2. A ‘‘typical’’ instability amplitude-growth found by CSP (taken from their Fig. 2), in comparison with the SIM and various DIM
results by MuSiC. The numbers in parentheses represent the number of grids per wave-length (k), h is the grid spacing, d is the smear layer
thickness, a is wave amplitude and d is the combined thickness of upper and lower fluids. A sine was used as the mollifying function in this
sample of DIM simulations.
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Table 4
Grid convergence study with SIM3

Grid resolution K* L1-norm

256/k 0.2481 0.0207
512/k 0.2343 0.0069

Rate: 1.585a

R = 7.1, m = 0.5, r = 1, S = 0, n = 4, a = 2.5133, e = 5 · 10�4. The exact (AROS) K* is 0.2274.
a The somewhat lower than the theoretical, 2nd-order convergence rate (for SIM3) is from accuracy losses due to (a) piecewise-linear

representation of the interface, and (b) numerical mappings between the structured-unstructured grids.
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64 · 64 and 128 · 128 nodes (admittedly with a different code and therefore a different implementation of
the DIM) was in fact due to a spurious (or at least inaccurate) solution. This could be due to the fact that
their method is first-order accurate in velocity, and therefore zero-order accurate in shear stress as is the
case with any DIM code (Nourgaliev et al., 2006a). Note that MuSiC-SIM is third-order accurate in both
space and time.

2. In fact, as shown in Fig. 3, a 64 · 64 grid is not sufficient to resolve the critical layer – as the energy flows in
the figure show, and as it is well known, instability growth depends critically on the proper resolution in the
immediate neighborhood of this layer. Also from this figure one can see that a good simulation would
require a 256 · 256 grid at a minimum, which is consistent with what we found in our simulations with
MuSiC-SIM.

3. As shown by the MuSiC-DIM results in Fig. 2, the growth rate depends on the amount of smearing (num-
ber of cells over which the transition region is defined), and degree of discretization (number of grid points
per wave-length) – these control indirectly the amount of ‘‘effective’’ discontinuity in viscosity at the inter-
face, which is responsible for the instability. As expected, the operating parameter in this is the ratio of
number of grid points used in smearing divided by the number of grids used per wave-length. When this
ratio is large enough, even an unstable interface may appear stable (see the 8h[128] case in Fig. 2). With
this hindsight one realizes that, since the result depends on the implementation details of each particular
DIM method, even the correct result may be recovered by chance; however a rigorously convergent, and
correct result is only accessible by a sharp treatment of the interface (MuSiC-SIM).

In regards to the CSP Fig. 8a, reproduced here as Fig. 4 (R = 0.47, m = 0.5, n = 0.111), along with results
from AROS, the following comments are offered for consideration:

1. The (asymptotic) long-wave analysis (Yih, 1967; Yiantsios and Higgins, 1988) as applied by CSP predicts
that all four wavelengths considered are linearly stable, while our linearized stability analysis (using AROS)
shows that two of them are stable (k* = 1 and k* = 0.5) and the other two unstable (k* = 0.125 and
k* = 0.25) – see Fig. 5. The reason for this apparent discrepancy is that the condition of applicability of
the asymptotic result (aR < 1) is not satisfied for any of the four wave-numbers considered by CSP in this
exercise – see Table 5.

2. For the two stable cases, one of the CSP numerical results is reasonably close to the correct one (5%), the
other is significantly off (42%).

3. For the two unstable cases, the CSP results exhibit unstable, pulsatile growth at rates that are distinctly off
the correct results.

4. Commenting on the discrepancy between their long-wave theory prediction and their numerical results CSP
note that: ‘‘The global trend is towards more unstable behavior for smaller k*. . . Hooper and Grimshaw
(1985) attributed increasing amplitude to the non-linear convective term in evolution equation, and
decreasing amplitude to energy transfer to higher harmonics . . . it appears that other non-linear mecha-
nisms exist in addition to the energy transfer between modes’’, and they conclude that:‘‘Further studies
are required to resolve this issue’’. Our results show that in fact there is no issue.

Conclusions: Thus we have to conclude that subject paper results fail to support the accuracy of DIM-
based simulations in the linear instability regime for the two-layer, viscosity-stratified flow system considered.



Fig. 3. (Top) Mean-flow velocity (U) and Reynolds-Stress-Function (RSF) profiles for the case found in CSP’s Fig. 2, showing the energy
flows that drive and dissipate the instability. (Bottom) A close-up view of the critical layer and ‘‘viscosity-smearing’’ regions. The RSF and
wave-speed of the Yih-mode are directly obtained from AROS. RSF is computed as discussed in Malik and Hooper (2005). The critical
layer position (ycr) is found by the condition U(ycr) = CR, where CR is the wave speed found from the eigenvalue problem (Drazin, 1962).
It can be seen that the interfacial wave ‘‘extracts’’ its energy from the less viscous fluid (right below the interface, RSF > 0) and looses some
of it to the more viscous fluid (above interface, RSF < 0). With a grid of 64/d as used by CSP, the critical layer is severely under-resolved.
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Moreover based on the sample MuSiC-SIM, AROS, and MuSiC-DIM results provided here, along with
additional evidence in Nourgaliev et al. (2006b), we suggest that any such attempt would be doomed to
failure. We believe this is a general conclusion, albeit the particulars, such as the amounts of error
incurred, would depend, in addition to the smearing parameters as noted above, on the type of mollifying
function used.



Fig. 4. Amplitude growth/decay curves for the several ‘‘unstable’’/‘‘stable’’ cases in Fig. 8a of CSP in comparison with AROS results.
Note that in CSP even the two stable cases started out slightly unstable (their Fig. 8b).

Fig. 5. The location of the four cases considered in Fig. 8 of CSP on the dispersion diagram determined by AROS.
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Table 5
Illustration of the breakdown of the Long-wave theory as the ‘‘small parameter’’ condition aR < < 1 is violated

Wavenumber, a cr (AROS) ci (AROS) cr (Long-wave) ci (Long-wave)

0.00001 0.8942417 �0.288369e�8 0.8942417 �0.288369e�8
.001 0.89424 �0.288369e�6 0.89424 �0.288369e�6
.01 0.89424 �0.288373e�5 0.89424 �0.288369e�5
.1 0.89423 �0.288740e�5 0.89424 �0.288369e�4
1 0.89299 �0.319908e�3 0.89424 �0.288369e�3
5.6554 (k* = 1.0) 0.89566 �0.750893e�3 0.89424 �0.163084e�2
11.3109 (k* = 0.5) 0.94875 �0.151780e�3 0.89424 �0.326171e�2
22.6217 (k* = 0.25) 0.99313 0.765712e�4 0.89424 �0.652340e�2
45.2435 (k* = 0.125) 0.99991 0.272234e�4 0.89424 �0.130468e�1

The CSP case considered is: R = 0.47, m = 0.5, n = 0.11, along with the last four wavelengths in the table. The values of aR are 2.65, 5.3,
10.6, and 21.2, respectively. Note that the errors are significant when aR > 0.1, but it is interesting that the qualitative result (stable/
unstable) is preserved (the first two cases) until there is an egregious violation of this condition (the last two cases).
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